嵌入式Linux下USB驱动程序的设计

Linux USB设备引言

USB接口简介

随着人们生活水平的提高,我们用到的USB设备也越来越多,但是Linux在硬件配置上仍然没有做到完全即插即用,对于Linux怎样配置和使用他们,也越来越成为困扰我们的一大问题;本文的目地是使大家了解怎样编制USB设备驱动,为更好地配置和使用USB设备提供方便;对于希望开发Linux系统下USB设备驱动的人员,也可作为进一步学习USB驱动的大体架构进而编写出特殊USB设备的驱动程序。

USB概念

USB(Universal Serial Bus)即通用串行总线,是一种全新的双向同步传输的支持热插拔的数据传输总线,其目的是为了提供一种兼容不同速度的、可扩充的并且使用方便的外围设备接口,同时也是为了解决计算机接口的太多的弊端而设计的。一个USB系统主要有三部分组成:USB互连、USB主机、USB设备三部分组成的,其结构如图1 所示。

在编写嵌入式Linux USB设备驱动程序设计时,可以分为三部分编写:主机端设备驱动程序、主机控制器驱动程序设计和设备端驱动程序三部分,在本文中重点介绍主机端驱动程序的设计。

USB主机端驱动程序与主机控制器的结构

USB设备驱动程序的设计包括主机端设备驱动程序设计、主机控制器驱动程序设计和设备端驱动程序设计三部分组成。主机端设备驱动程序就是通常说的设备驱动 程序,它是主机环境中为用户应用程序提供一个访问USB外设的接口。Linux为这部分驱动程序提供编程接口,驱动程序设计者只要按照需求编写驱动程序框 架,通过调用操作系统提供的API接口函数可以完成对USB外设的特定访问。

主机控制驱动主要是对USB主机控制器的驱动,在大多数PC环境下,主机控制器都是由操作系统提供。嵌入式设备一般都没有USB主机控制器,只是工作在 Slave模式下。如果要使USB具有主机功能,那么设备中需要选用一个带主机控制器的USB接口控制芯片,同时自己还要有实现该主机控制器的驱动程序。

Linux内核USB主机控制器接口规格

目前Linux内核中只提供USB主机控制器的开放主机控制器和通用主机控制器接口两种规格,而这两种规格主要用在PC架构中。USB主机端驱动程序与主机控制器的结构如图2所示。其中USB核是Linux的一个子模块,集中定义了一组USB相关的数据结构、宏以及API函数。

USB主机端驱动程序与主机控制器的结构

USB设备驱动程序是常说的设备固件程序的一部分,提供设备信息与主机的通信接口。设备端USB驱动程序设计由以下几部分处理程序组成。初始化例程:完成 描述符指针、端点、配置改变等操作。数据传输例程:完成控制传输、批量传输、中断传输及同步传输等传输方式下的数据收发工作。标准设备处理请求:处理标准 设备请求。厂商请求处理:处理生产商指定请求。其他操作:处理主机发出的端口复位、配置改变等操作。

1.编写Linux USB设备驱动程序的步骤及框架

USB驱动程序首先要向Linux内核注册自己,并告诉系统它所支持的设备类型以及它所支持的操作。这些信息通过一个usb_driver结构来传递。usb_driver结构如下:

static struct usb_driver skel_driver = {

name: "skeleton";/*驱动程序的名称*/

probe: skel_probe; /*设备列举时被调用*/

disconnect: skel_disconnect; /*设备被卸载时被调用*/

fops: &skel_fops; /*指向一个file_operation结构,内核通过它来访问驱动程序的文件操作函数,与用户程序的read、write等操作进行交互*/

minor USB_SKEL_MINOR_BASE; /*指向设备的次设备号,用于系统识别主设备号相同的设备(即一个驱动程序可以同时支持多个USB设备*/

id_table: skel_table; /*保存设备的厂商ID和产品ID,作为该设备的唯一标识,驱动程序向系统注册后,当下次插入时,系统根据这个标识查找正确的驱动程序,实现设备的即插即用*/

};

static struct file_operation skel_fops={

{

owner:THIS_MODULE,

read:skel_read,

write:skel_write,

ioctl:skel_ioctl,

open:skel_open,

release:skel_release,

};

(1)USB驱动程序注册和注销

USB驱动程序注册,就是把在初始化函数中填好的use_driver结构作为参数传递给
use_register()函数即可,函数的调用方法为:

result=usb_register(&skel_driver);

当要从系统卸载驱动程序时,也是将use_driver结构作为参数传递给usb_deregister 函数处理。 函数的调用格式为:
static void __exit usb_skel_exit(void)
{ /* deregister this driver with the USB subsystem */
usb_deregister(&skel_driver);
}
module_exit(usb_skel_exit);

当USB设备插入时,为了使linux-hotplug(Linux中PCI、USB等设备热插拔支持)系统自动装载驱动程序,需要创建一个MODULE_DEVICE_TABLE。核心代码如下(这个模块仅支持某一特定设备):
/* table of devices that work with this driver */

static struct usb_device_id skel_table [] = {

{ USB_DEVICE(USB_SKEL_VENDOR_ID,

USB_SKEL_PRODUCT_ID) },

{ } /* Terminating entry */

};

MODULE_DEVICE_TABLE (usb, skel_table);

USB_DEVICE宏利用厂商ID和产品ID提供了一个设备的唯一标识。当系统插入一个ID匹配的USB设备到USB总线时,驱动会在USB core中注册,驱动程序中probe 函数也就会被调用。usb_device 结构指针、接口号和接口ID都会被传递到函数中。
(2)probe()函数

probe()函数的编写格式为:static void * skel_probe(struct usb_device *dev, unsigned int ifnum, const struct usb_device_id *id);Linux USB驱动程序需要确认插入的设备是否可以被接受,如果不接受,或者在初始化的过程中发生任何错误,probe()函数返回一个NULL值。否则返回 一个含有设备驱动程序状态的指针,通过这个指针,就可以访问所有结构中的回调函数。

在Linux USB驱动程序里,最后一点是要注册devfs(设备文件系统)。首先创建一个缓冲用来保存那些被发送给USB设备的数据和那些从设备上接受的数据,并为设备 传输创建一个USB请求块(URB)以向设备写入数据,同时USB urb 被初始化,然后在devfs子系统中注册设备,允许devfs用户访问USB的设备。注册过程如下:

/* initialize the devfs node for this device and register it */

sprintf(name, "skel%d", skel->minor);

skel->devfs = devfs_register (usb_devfs_handle, name, DEVFS_FL_DEFAULT, USB_MAJOR, USB_SKEL_MINOR_BASE + skel->minor, S_IFCHR | S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH, &skel_fops, NULL);

如果devfs_register函数失败, devfs子系统会将此情况报告给用户。如果设备从USB总线拔掉,设备指针会调用disconnect 函数。驱动程序就需要清除那些被分配了的所有私有数据、关闭urbs,并且从devfs上注销调自己。调用函数的格式为:

/* remove our devfs node */

devfs_unregister(skel->devfs);

现在,skeleton驱动就已经和设备绑定上了,任何用户态程序要操作此设备都可以通过file_operations结构所定义的函数进行了。

(3)open()、write()和read()函数

首先,要打开此设备。在open()函数中MODULE_INC_USE_COUNT 宏是一个关键,它起到一个计数的作用,有一个用户态程序打开一个设备,计数器就加1。例如,以模块方式加入一个驱动,若计数器不为零,就说明仍然有用户程 序在使用此驱动,这时候,就不能通过rmmod命令卸载驱动模块了。

/* increment our usage count for the module */

MOD_INC_USE_COUNT;

++skel->open_count;

/* save our object in the file’s private structure */

file->private_data = skel;

当open完设备后,read()、write()函数就可以收、发数据了。

read()函数首先从open()函数中保存的fi。

Write()函数和read()函数是完成驱动对读写等操作的响应。在skel_write中,一个FILL_BULK_URB函数,就完成了urb 系统callbak和的skel_write_bulk_callback之间的联系。注意skel_write_bulkcallback是中断方式, 所以要注意时间不能太久,本程序中它就只是报告一些urb的状态等。

read 函数与write 函数稍有不同在于:程序并没有用urb 将数据从设备传送到驱动程序,而是用usb_bulk_msg 函数代替,这个函数能够不需要创建urbs 和操作urb函数的情况下,来发送数据给设备,或者从设备来接收数据。调用usb_bulk_msg函数并传到一个存储空间,用来缓冲和放置驱动收到的数 据,若没有收到数据表示失败并返回一个错误信息。

usb_bulk_msg函数:当对usb设备进行一次读或者写时,usb_bulk_msg 函数是非常有用的; 然而, 当需要连续地对设备进行读/写时,应建立一个自己的urbs,同时将urbs 提交给USB子系统。

skel_disconnect函数:当释放设备文件句柄时,这个函数会被调用。
MOD_DEC_USE_COUNT宏也会被调用到(和MOD_INC_USE_COUNT刚好对应,它减少一个计数器),首先确认当前是否有其他的程序正在访问这个设备,如果是最后一个用户在使用,可以关闭任何正在发生的写,操作如下:

/* decrement our usage count for the device */

–skel->open_count;

if (skel->open_count <= 0) {

/* shutdown any bulk writes that might be

going on */

usb_unlink_urb (skel->write_urb);

skel->open_count = 0;

}

/* decrement our usage count for the module */

MOD_DEC_USE_COUNT;

USB设备可以在任何时间点从系统中取走,即使程序目前正在访问它。USB驱动程序必须要能够很好地处理解决此问题,它需要能够切断任何当前的读写,同时通知用户空间程序:USB设备已经被取走。

2.设计实例

下面通过介绍键盘飞梭驱动程序的实例来让读者更好的理解USB驱动程序的工作原理,实现代码如下:

参考原文.

三、结语

USB规范是一门比较新的技术,接口使用方便,但是驱动程序的设计较复杂。上面介绍了USB设备驱动程序的设计,主要分析了主机端驱动程序的设计,并且给出了一个编写USB驱动程序的实例。

扩展阅读:

Linux USB驱动开发要求

USB驱动程序开发系列-基本步骤

来自:: http://elvyis.wordpress.com/2011/03/24/%E5%B5%8C%E5%85%A5%E5%BC%8Flinux%E4%B8%8Busb%E9%A9%B1%E5%8A%A8%E7%A8%8B%E5%BA%8F%E7%9A%84%E8%AE%BE%E8%AE%A1/

版权声明:
作者:驱动外包
链接:http://www.51qudong.net/153.html
来源:算法优化_驱动外包_直播算法优化_MAC驱动开发_Linux驱动开发_usb驱动移植外包
文章版权归作者所有,未经允许请勿转载。

THE END
分享
二维码
< <上一篇
下一篇>>